

UNIVERSIDAD NACIONAL DE ASUNCIÓN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES
DEPARTAMENTO DE FISICA
PLAN 2016

ELECTRICIDAD Y MAGNETISMO

CARRERA: LICENCIATURA EN FÍSICA MÉDICA

I. IDENTIFICACION

Código : 12C
 Horas Semanales de Clase : 5

2.1. Teóricas : 3 2.2. Prácticas : 2

3. Crédito : 4

4. Pre-Requisito : Mécanica

II. JUSTIFICACIÓN

Uno de los descubrimientos mas importantes de la ciencia fue la electricidad, mediante ella hoy podemos disfrutar la tecnología: computadoras, televisión y tantas otras posibilidades que se nos brinda. Conocer la electricidad es importante para todo individuo y más aun para un estudiante de ciencias. Además, su conocimiento es de importancia por que estamos en contacto diario con ella y el individuo debe conocer su manejo y sus riesgos. Con esta asignatura el estudiante tendrá los conceptos básicos de la electricidad que le permitirá encarar otra asignatura de nivel superior.

III. OBJETIVOS

Al finalizar el curso el estudiante deberá estar en condiciones de:

- 1. Conocer las leyes básicas que rigen en le electricidad
- 2. Manejar los instrumentos de mediciones eléctricas básicas.
- 3. Resolver situaciones problemáticas elementales de la vida diaria.

IV. CONTENIDOS

A. UNIDADES PROGRAMATICAS

- 1. Electrostática.
- 2. Corriente Continua.
- 3. Electromagnetismo.
- 4. Inducción Magnética y Corriente Alterna

UNIVERSIDAD NACIONAL DE ASUNCIÓN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE FISICA PLAN 2016

B. **DE**

SARROLLO DE LAS UNIDADES PROGRAMATICAS

1. Electrostática

- 1.1. Carga Eléctrica.
 - 1.1.1 Conductores y Aislantes.
 - 1.1.2 Carga por Frotamiento y por Inducción.
- 1.2. Ley de Coulomb.
- 1.3. Campo Eléctrico.
 - 1.3.1 Líneas de Campo Eléctrico.
- 1.3.2 Cálculo del Campo Eléctrico de Distribuciones de Carga.
- 1.3.3 Dipolos Eléctricos.
 - 1.3.4 El tubo de Rayos Catódicos.
 - 1.4. Ley de Gauss.
- 1.4.1 Flujo del Campo Eléctrico y Ley de Gauss.
- 1.4.2 Cálculo del Campo Eléctrico Usando la Ley de Gauss.
 - 1.4.3 Campo Eléctrico y Cargas en Conductores.
 - 1.5. Potencial Electrostático.
- 1.5.1 Energía Potencial y el Potencial Eléctricos.
- 1.5.2 Relación Entre el Campo y el Potencial Eléctricos.
- 1.5.3 Cálculo del Potencial Eléctrico de Distribuciones de Carga.
 - 1.5.4 Superficies Equipotenciales.
 - 1.6. Capacidad Eléctrica
 - 1.6.1 Condensadores y Dieléctricos.
 - 1.6.2 Energía Almacenada en Condensadores.
 - 1.6.3 Asociación de Condensadores.

2. Corriente Eléctrica.

- 2.1. Corriente y Movimiento de Cargas.
- 2.2. Densidad de Corriente Eléctrica
- 2.3 Resistencia y Ley de Ohn.
 - 2.3.1. Resistividad.
 - 2.3.2. Coeficiente de Temperatura.
- 2.3.3. Modelo Microscópico de la Conducción Eléctrica.
 - 2.4. Potencia Eléctrica.
 - 2.3.1. Efecto Joule.
 - 2.3.2. Energía en Circuitos C.C.
 - 2.5. Circuitos CC.
 - 2.4.1. Asociaciones de Resistencias.
 - 2.4.2. Leyes de Kirchhoff

SUCCONAL CONTROL OF THE PROPERTY OF THE PROPER

UNIVERSIDAD NACIONAL DE ASUNCIÓN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE FISICA PLAN 2016

- 2.4.3. Circuitos R.C.
- 2.6. Amperímetros. Voltímetros, Ohmiómetros.

Galvanómetro, Puente de Wheaststone, Potenciómetro

- 3. Electromagnetismo.
 - 3.1. Campo Magnético.
- 3.1.1. Acción del Campo Magnético sobre Cargas en Movimiento.
 - 3.1.2. Torque y Momento Magnéticos.
 - 3.1.3. El Efecto Hall.
- 3.2. Campo Magnético Creado por Cargas en

Movimientos.

- 3.2.1. Ley de Biot y Savart.
- 3.2.2. Fuerza entre Corrientes Eléctricas.
- 3.2.3. Ley de Ampere
- 4. Inducción Magnética y Corriente Alterna.
 - 4.1. Flujo Magnético y Ley de Faraday.
 - 4.2. Ley de Lenz.
 - 4.3. F.E.M. de Movimiento.
 - 4.4. Generadores y Motores.
 - 4.5. Autoinducción.
 - 4.5.1. Coeficiente de Autoinducción.
 - 4.5.2. Bobinas y Circuitos R.L.
 - 4.5.3. Energía Magnética.
 - 4.6. Circuitos R.C.L.
 - 4.6.1. Circuitos RCL sin fuente.
- 4.6.2. Circuitos Reactivos con Fuente, Desfasaje y Fasores.
- 4.6.3. Circuitos R.C.L. Serie y Paralela.
 - 4.6.4. Factor de Potencia y Valores Eficaces.
 - 4.6.5. Resonancia.
 - 4.7. Transformadores

V. METODOLOGÍA

- Textos, materiales de consulta.
- Medios audiovisuales.
- Exposición oral.
- Experiencias de Laboratorios.
- Investigación Bibliografíca.
- Resolución de Problemas

TOOM OF THE STATE OF THE STATE

UNIVERSIDAD NACIONAL DE ASUNCIÓN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE FISICA PLAN 2016

VI. MEDIOS AUXILIARES

- Textos, materiales de consulta
- Medios audiovisuales
- Laboratorios
- Multimedia, proyectores.

VII. **EVALUACIÓN**:

Las evaluaciones se llevarán a cabo conforme al Reglamento vigente de la Fa.C.E.N.

VIII. BIBLIOGRAFÍA BÁSICA

- Serway. Beichner./ Tomo II, Fisica para estudiantes de Ciencias e Ingenieria. Quinta Edicieión, 2000.
- Paul A. Tipler. / Tipler, Paul. A. Física. 3era edición, 1996.
- Sears. Zemansky. / Volumen 2, Fisica Universitaria. Undecima Edición, 2005

COMPLEMENTARIA

- Alonso, Marcelo. Física. / Marcelo Alonso, Edward Finn.-- Addison Wesler, 1993. --- Vol. II -- 584 P.
- Halliday, David. Física./ David Halliday, Robert Resnick.--18a. de. -- México : Continental .1993.-- 646 p.
- Gettys, Keller, Skove./ Fisica Clasica y Moderna . 1992